反应式编程(一):Spring Reactor 入门与实践

1月前 ⋅ 60 阅读

参考 Spring Reactor 入门与实践

适合阅读的人群:本文适合对 Spring、Netty 等框架,以及 Java 8 的 Lambda、Stream 等特性有基本认识,希望了解 Spring 5 的反应式编程特性的技术人员阅读。

一、前言

最近几年,随着 Node.js、Golang 等新技术、新语言的出现,Java 的服务器端开发语言老大的地位受到了不小的挑战。虽然,Java 的市场份额依旧很大,短时间内也不会改变,但 Java 社区对于挑战也并没有无动于衷。相反,Java 社区积极应对这些挑战,不断提高自身应对高并发服务器端开发场景的能力。

为了应对高并发的服务器端开发,在2009年的时候,微软提出了一个更优雅地实现异步编程的方式 —— Reactive Programming,中文称反应式编程。随后,其它技术也迅速地跟上了脚步,像 ES6 通过 Promise 引入了类似的异步编程方式。Java 社区也没有落后很多,Netflix 和 TypeSafe 公司提供了 RxJava 和 Akka Stream 技术,让 Java 平台也有了能够实现反应式编程的框架。

其实,在更早之前,像 Mina 和 Netty 这样的 NIO 框架其实也能搞定高并发的服务器端开发任务,但这样的技术相对来说只是少数高级开发人员手中的工具。对于更多的普通开发者来说,难度显得大了些,所以不容易普及。

很多年过去了,到了2017年,虽然已经有不少公司在实践反应式编程。但整体来说,应用范围依旧不大。原因在于缺少简单易用的技术将反应式编程推广普及,并同诸如 MVC 框架、HTTP 客户端、数据库技术等整合。

终于,在2017年9月28日,解决上面问题的利器浮出水面 —— Spring 5 正式发布。Spring 5 其最大的意义就是能将反应式编程技术的普及向前推进一大步。而作为在背后支持 Spring 5 反应式编程的框架 Reactor,也相应的发布了 3.1.0 版本。

t1.png

本文接下来将会向大家介绍 Reactive Programming(反应式编程)、Reactor 的入门以及实践技巧等相关的内容。文章中的实践内容来自作者使用 Spring 5 和 Reactor 等技术改造实际项目的经历。

二、Reactor 简介

先介绍一下 Reactor 技术。Reactor 框架是 Pivotal 公司(开发 Spring 等技术的公司)开发的,实现了 Reactive Programming 思想,符合 Reactive Streams 规范(Reactive Streams 是由 Netflix、TypeSafe、Pivotal 等公司发起的)的一项技术。其名字有反应堆之意,反映了其背后的强大的性能。

Reactive Programming

Reactive Programming,中文称反应式编程,是一种高性能应用的编程方式。其最早是由微软提出并引入到 .NET 平台中,随后 ES6 也引入了类似的技术。在 Java 平台上,较早采用反应式编程技术的是 Netflix 公司开源的 RxJava 框架。现在大家比较熟知的 Hystrix 就是以 RxJava 为基础开发的。

反应式编程其实并不神秘,通过与我们熟悉的迭代器模式对比便可了解其基本思想:

event Iterable (pull) Observable (push)
retrieve data T next() onNext(T)
discover error throws Exception onError(Exception)
complete !hasNext() onCompleted()

上面表格的中的 Observable 那一列便代表反应式编程的 API 使用方式。可见,它就是常见的观察者模式的一种延伸。如果将迭代器看作是拉模式,那观测者模式便是推模式。被订阅者(Publisher)主动的推送数据给订阅者(Subscriber),触发 onNext 方法。异常和完成时触发另外两个方法。如果 Publisher 发布消息太快了,超过了 Subscriber 的处理速度,那怎么办。这就是 Backpressure 的由来,Reactive Programming 框架需要提供机制,使得 Subscriber 能够控制消费消息的速度。

在 Java 平台上,Netflix(开发了 RxJava)、TypeSafe(开发了 Scala、Akka)、Pivatol(开发了 Spring、Reactor)共同制定了一个被称为 Reactive Streams 项目(规范),用于制定反应式编程相关的规范以及接口。其主要的接口有这三个:

  • Publisher
  • Subscriber
  • Subcription

其中,Subcriber 中便包含了上面表格提到的 onNext、onError、onCompleted 这三个方法。

对于 Reactive Streams,大家只需要理解其思想就可以,包括基本思想以及 Backpressure 等思想即可。

Imperative vs Reactive

对于上面表格里提到的 Iterable 和 Observale 两种风格,还有另一个称呼,便是 Imperative(指令式编程)和 Reactive(反应式编程)这两种风格。其实就是拉模型和推模型的另一种表述,大家理解其中的思想即可。对于 Imperative,老外写的文章有时会用,直译就是指令式编程,其实就是我们大家平时用 Java、Python 等语言写代码的常见风格,代码执行顺序和编写顺序基本一致(这里不考虑 JVM 指令重排)

Reactor 的主要模块

Reactor 框架主要有两个主要的模块:reactor-core 和 reactor-ipc。前者主要负责 Reactive Programming 相关的核心 API 的实现,后者负责高性能网络通信的实现,目前是基于 Netty 实现的。

Reactor 的主要类 在 Reactor 中,经常使用的类并不是很多,主要有以下两个:

  • Mono 实现了 org.reactivestreams.Publisher 接口,代表0到1个元素的发布者。
  • Flux 同样实现了 org.reactivestreams.Publisher 接口,代表0到N个元素的发表者。

可能会使用到的类

Scheduler 表示背后驱动反应式流的调度器,通常由各种线程池实现。

Web Flux

t1.png